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Phase Transition for a One-Dimensional 
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Existence of a phase transition is proved for a one-dimensional lattice gas with 
long-range interaction and nearest neighbor exclusion. 
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1. I N T R O D U C T I O N  

Using several versions of Peierls' method, ~4) Dobrushin (2) established the 
existence of phase transitions for various lattice gas models of dimension 
d~> 2. Included in ref. 2 was a proof of the existence of a phase transition 
for a lattice gas with hard core. Subsequently, Fr6hlich and Spencer, (3) 
using a substantial modification of this basic contour method, proved the 
existence of a spontaneous magnetization at low temperature for the one 
dimensional Ising model with 1/r 2 interaction energy (but no hard core). 

In this paper we combine the techniques of ref. 2 and 3 to give a proof 
of the existence of a phase transition for a one-dimensional pair potential 
with hard core whose interaction strength decays like 1/r 2. The imposition 
of the hard-core condition on the Hamiltonian has the effect of making the 
Hamiltonian less symmetric with respect to the values of the occupation 
variables {xi}  (see (1.1)below). 

We note that significant advances in the study of one-dimensional 
long-range ferromagnetic lattice spin models have been made since the 
publication of ref. 3. Applications of percolation theory, using the 
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Fortuin Kesteleyn representation, to one-dimensional Ising and Potts 
models were recently given in ref. 7, which also contains a useful summary 
and listing of other related work on one-dimensional models. 

Let cg denote the set of "allowable" configurations of the form x = 
{x~}~z with xi = 0  or 1 such that xixi+l = 0  for all i e Z .  The Hamiltonian 
for volume I - L ,  L]  is given by 

1 H ( x ) =  1 (-l~12Yx,xj -~ -~HL(X)=-- Y, li-- - E E (-l)i-Jl il  
- - L  <~i< j<~Z ]il> L I j I<~L , i - - J ,  2 

L 

x xixj - # ~ xi (1.1) 
i=  L 

for x~Cg, where for 1i1 > L we will assume the boundary condition 

{~ if i i seven 
x~= if i i s o d d  

(1.2) 

or alternatively 

10 if iis odd 
x~= if i i seven 

(1.3) 

If xr we may assume H ( x ) =  ~ with the convention e x p [ - f l - ~ ] = 0  
when fi > 0. The parameter # in (1.1) represents the chemical potential for 
this lattice gas model. For fixed # and inverse temperature fl, denote by 
( . ) [  (fl, #) [respectively ( . ) 2  (fl, ~t)] the finite-volume equilibrium states 
for flHL(X) with boundary condition (1.2) [respectively (1.3)]. We can 
now state the main result. 

T h e o r e m  1.1. 
sufficiently large 

and 

Let ~ = Z j > ~ z ( - 1 ) J + I / j  2. If # > ~ ,  then for all /~ 

(Xo)Z (13, # ) >  1/2 (1.4) 

(Xo) ~- (/3, #) < 1/2 (1.5) 

uniformly in L. 

From Theorem 1.1 it follows by the methods of Ruelle, I5~ for example, 
that two distinct extremal Gibbs states exist for H, fl, /~ when ~t > e and 



Phase Transition for 1 D Lattice Gas 737 

when fl is sufficiently large. From Dobrushin's uniqueness theorem (~ (see 
also ref. 6) it follows that the Gibbs state is unique if 

f l~ j  2 < 2  
j~>2 

Hence the system experiences a phase transition. 
The proof of Theorem 1.1 is given in Section 3, where reference is 

made to some results of Fr6hlich and Spencer. (3~ We list these results in 
Section 2 for the convenience of the reader. 

2. REVIEW OF FROHLICH AND SPENCER (3) 

tn this section we list some definitions and theorems of Fr6hlich and 
Spencer/3) which will be used in the proof of Theorem 1.1. 

Let 

w h e r e  (9 i 

/4L(a)=  ~ J ~ ( 1 - a , ~ j )  (2.!) 
i < j  

= +1 for i s  [ - L , L ] ,  ai = +1 for [il > L ,  and for fixed c > 0 ,  

c if [ i - j [ = l  (2.2) 
J~= l i - j ] - 2  if ] i - j l ) 2  

We note that Fr6hlich and Spencer considered the case c =  1, but the 
theorems below are valid for (2.2) with no significant changes in the proofs. 

Let Z* be the lattice of nearest neighbor bonds, b = (i, i +  1) for i s  Z. 
Each configuration a of spins uniquenly specifies a contour (or collection 
of spin flips) F =  F(a) ~ Z* = Z* c~ [ - L  - 1, L + 1] with 

b s F  iff a i a i + l = - i  (2.3) 

The collection of such contours with even cardinality is in one-to-one 
correspondence with possible configurations. Thus, we may make the 
identifications 

f l L ( ~ )  = i l L ( r )  - B ~ ( F ( ~ ) )  (2.4) 

Defini t ion 2.1. Let ? = {(il, il + 1) ..... (i,, i, + 1)} be an arbitrary 
collection of spin flups with ik < ik + ~ for k = 1,..., n -- 1. 

(a) Let d(y)= in + 1 - i  1. 

(b) Let I(y) be the open interval (iz, in + 1). 
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(c) Let Ig be the open interval (i~, ik+ ~ + 1). 

(d) Let [k be the closed interval [ik, ik+~ + 1]. 

(e) Let 

L(7)= 
k =  

where [ln2(ik+ 1 - i k ) ]  is the 
ik + i - ik. 

(f) The distance dist[(ik, 
(ik, ik + 1) and (im, i m -t- 1) is 
midpoints of the spin flips. 

{ [ l n 2 ( i k  + 1  - -  ik)] -~ 1 } 
1 

integer part of the logarithm base 2 of 

ik + 1 ), ( im, i m q- 1 ) ]  between the spin flups 
[im - i ~ ] ,  the distance in R between the 

For any M > 0, any even collection of spin flips F can be partitioned 
into disjoint subsets 71, 72,... called primitive contours, which satisfy the 
following condition. 

Condition D: 

(a) The cardinality of each 7~ is even, U ~  7~ = F, and 7= n 7~' = 
for ~r  

(b) dist(7~, 7~,)/> M[min(d(7~), d(7~,,))] 3/2 for e r c~'. 

(c) If 7 c7~ and dist(7, ,&\7)~> 2 M d ( 7 )  3/2, then card (7) is odd for 
all e. 

In Condition D, M is independent of F and each 7~, and will be 
chosen later. 

The following results, among others, were proved by Fr6hlich and 
Spencer (3) and were used by them to prove the existence of a phase 
transition for the Hamiltonian (2.1). 

From Theorem B, Lemma 2.1, and the remark in Section 3 of ref. 3, 
one obtains the following. 

T h e o r e m  2.1. If 7~ satisfies Condition D(c) and card (7~) is even, 
then 

C1 L(7,) 
BL(7~) >/(In M) 2 

where cl > 0 and independent of M and 7~- 

The proof of Theorem C in ref. 3 establishes the following. 

T h e o r e m  2.2. There exists a constant c2 independent of R and L 
such that 

card { 7 ~ Z*: L(7) ~< R, 1(7) ~ 0 } ~< c c2R 

Theorem 2.3 below is Theorem 4.1 of ref. 3. 
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T h e o r e m  2.3. Let F =  ), w 72 w ~3 w ... satisfy Condition D. Then 
there is a constant c3 independent of M such that 

in M L 
+ - J q ( r )  c3 

The following corollary comes from the proof of Theorem 4.1 in ref. 3. 

C o r o l l a r y  2.4. With the same hypotheses as in Theorem 2.3, let Ik 
be defined for 7 as in Definition 2.1c and let 

A~ = {(i, j)  l ie  I(y~) for some 7~ such that I(7~)c Ik and j r  Ik} 

Define 

Then 

i if ( i , j ) ~ A k  
)~A,(i, j) = if (i, j) r A~ 

C4 
2 ~ Jo[ZAk(i, j) + ZAk(J, i)] ~ ~ ln(ik +1 

i < j  

for some constant C 4 > O. 

--  ik) 

3. PROOF OF T H E O R E M  1.1 

L e m m a  3.1. For an allowable configuration xeCg, the 
Hamiltonian H(x) given by (1.1) for volume V= I - L ,  L]  with boundary 
condition (1.2) is equal, to within an additive constant, to 

HL(cr)= ~ J~(1-~r,~rj) 
i < j  

under the transformation 

~r i = ( - 1 )i (2x~ - 1 ) 

The boundary condition (1.2) becomes a i -  + 1 for I i l>  L and 

{ # - ~  if l i - j ] = l  
Jo = l i -  jl 2 if [ i -  jl >~ 2 

with 0~ given in Theorem 1.1. 

(3.1) 

(3.2) 

(3.3) 
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Proof. Let I~(x)l be the number of pairs (xi, x~+l) in x such that 
xi =x~+l and let IF(x)l be the number of pairs (xi, xi+l) such that x~ 
Xi+l, i, i +  1 s I - - L - 1 ,  L +  1]. Then with the boundary condition (1.2), 

L 

2 ~ x, + 1 - ( - 1) c = IF(x)l (3.4) 
i - - - - L  

and Ir(x)l + IP(x)l = 2 L  + 2. Thus, 

c 1 1 + ( - 1 )  L 
xi = - ~  lr(x)l + L q 

i =  L 2 

Equation (1.1) then becomes 

( - - 1 )  i + j  

H(x)  = - 4  ~ - - - - -  + 2p I/~(x)[ + c~ (3.5) (i,#)~u~ l i - j [  2 xixs 

[ i - - j l > l  

where c~ is a constant and where 

Uc = {(i, j ) l i <  j, i o r j  is in [ - -L ,  L ]}  

Substituting (3.2) into (3.5) gives 

HL(x)=Hc(~r)= - ~ a,crj [ i - j l  2 + 2 ( / ~ - ~ ) I r ( ~ ) l  +c= (3.6) 
( i , j )  E U L 

] i - - j l > l  

where c2 is a constant and [F(a)l = IP(x)l is the number of pairs (ai, ai+ 1) 
in ~ such that ai Ca i+  ~ for i, i +  1 e [ - L -  1, L +  1]. Thus, we may write 

2 ( a ~ - a j ) 2 = 4  IF(~)I 
i < j  

li j l = l  

o r  

1 
Ir(~)l = - 5  ~ ~ : :  + c3 (3.7) 

( i , j )  E U L 

I i - j l = l  

where c 3 depends only on L. Substituting (3.7) into (3.6) gives 

H(~r) = - ~, ffiffj(i--j)-2--(/A--~) 
( i , j ) e  UL 

I i - j l > l  

• ~ ~ria j + 2(/~ - ~)c3 + c2 (3.8) 
(i , j)  e UL 
] i - J l  = I 
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Rewriting (3.8) gives us 

H(o ' )=  ~ J,7(1--~i(Tj)--C4 
f < i 

where c4 = c2 + 2(# - ~)c3 - Z(i,j)~ uL J~. 

Remark 3.1. If the boundary condition (1.2) is replaced by (1.3), the 
proof of Lemma 3.1 is modified by replacing (3.4) by 

L 

2 ~ x i = l F ( x ) ] - l - ( - 1 )  L 
i - - - - L  

Remark 3.2. Our use of IF(x)l and IF(x)l in the proof of Lemma 3.t 
resembles the use of analogous quantities by Dobrushin (2~ for higher 
dimensional models. 

Defini t ion 3.1. The configuration a = { a i } i ~ z  with a i = + l  is 
allowable if x = {xi}~ z is allowable, where 

x~ = ( - 1 )~ r + 1/2 

A set of spin flips F defined by (2.4) is allowable if F corresponds to an 
allowable configuration o-. 

As in (2.5), we make the identification HL(a)=HL(F) when 
corresponds to F via (2.4) and when ~ and F are allowable. 

Remark 3.3. It is easily checked that F={(il ,  i~+l),..., ( i 2 n ,  

i2, + 1)} is allowable if and only if the distance between any two con- 
secutive spin flips in F is an odd integer and both L - i zn  and il + L + 1 are 
odd integers in the case that L is odd, and L - i 2 ,  and il + L + 1 are even 
in the case that L is even. 

Defini t ion 3.2. Let 7 = { ( i ~ , i ~ + 1 )  ..... (i2, , , izn+l)}cF be a 
primitive contour for the allowable contour F. Denote by (F \7 ) '  the 
collection of spin flips obtained from F\7 as follows: Translate all spin flips 
in F \ ?  which lie between i k + 1 and ik + ~ one unit to the left if k is odd and 
1 ~< k < 2n. All other spin flips in F \ 7  remain unchanged. 

It is easily checked that if F is allowable and 7 c F is primitive, then 
(F\~)  ~ is allowable. 

Remark 3.4. The transformation which takes F\~; to (F \y ) '  is 
related to the transformation I'G of Dobrushin, ~2) who considered 
Hamiltonians with hard core in Z d for d >  1. Our transformation is essen- 
tially a tyl/2-fold composition of one-dimensional versions of Dobrushin's 
T~. 
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L e m m a  3.2. Let F be any allowable contour and let 7 ~ F  be 
primitive. Then 

in M 
IO( r \T )  - O [ ( r \ 7 ) ' ]  I ~< 6(M) --M-- L(7) (3.9) 

where 6(M) is independent of F and 7, and lim M ~ ~ 6(M) = O. 

Proof. For an arbitrary collection of spin flips F1, define for i < j 

Xr~(i,j)={~ if IC, n[ i , j ] l i sodd  
if IF1 m ri, j ] l i s e v e n  

Then 

H[F\7]  - / t [ ( F \ 7 ) ' ]  = 2 ~ Jo[)'~r\,~(i, j )  - )~(r\7),(i, j)] 
i < j  

~- ~ U(F, 7, i, j) (3.10) 
i< j  

For the primitive contour 7, let Ik and ik be as in Definition 2.1. From 
Definition 3.2 

Zr\.e(i, j) = Z(r\~),(i, j) 

when i < j, i, j 6 Ik, and k is even. Thus, 

(3.11) 

U(F, 7, i, j )  = 0 (3.12) 
i < j  

i,j~lk\([k+l~[k-l) 

when k is even. Hence, we may write 

U(F,y,i , j )= ~ ~ U(F, 7, i , j )+~*U(F,  7, i,j) (3.13) 
i < j  k o d d  i,j~[k 

i < j  

where the sum Y~* in (3.13) is over all i < j  with not both i a n d j  in fk for k 
odd or in Ik \ ( ik+l  w i k _ l )  for k even. If i + l , j + l ~ l k  or i , j~Ik  for k 
odd, then 

Z(r\7),(i, j )= Zr\~(i + 1, j+  1) (3.14) 

and 

Jij = J i+ l , j +  1 



Phase Transition for 1 D Lattice Gas 743 

It follows that for k odd, 

2 
i,.;e .rk 

i < j  

U(F, 7, i, j) ~ 2 ~. J,k/Zr\,(ix, j) 
j e  [k 
j ~  ik 

+ 2  ~ J]ik+l + l Z(r\~),(j, ik + t + l ) 
j e l k  

j~ ik+ l+ l  

Ifjq} I(7~) for any primitive 7~ c Ik, then 

)~r\~(ik, j ) = O =  Z(r\.e),(j- 1, i~ + 1 + 1) 

Thus, the right side of (3.15) is bounded by 

2 ~ JU[ZAk(i, j)  + )~Ak(J, i)] 
i < j  

Applying Corollary 2.4 to (3.16) then gives 

j)  c4 In M - i e )  U(F, 7, i, < - - - -  ln(ik+l 
i,j~rk In M M 

i < j  

Hence, 

(3.15) 

(3.16) 

(3.17) 

j)  Ca In M 
y. y~ u ( r ,  7, i, < - -  - - / 4 7 )  (3.18) 

kodd i, j e l k  l n M  M 
i < j  

To bound the last sum on the right side of (3.13) we introduce the 
following terminology. Define j ~ Z to be a "bad" point if there exists a 
primitive contour 7~ c Ik with k odd such that (j, j + 1) c y~. If a point in 
Z is not bad, we say it is "good." 

It is easily checked that if i and j are both good or both bad, then 

Zr\.~(i, j) = Z(r\y),(i, j)  

Hence ~2" U(F, 7, i, j )  is reduced to a sum over pairs i,j, where i a n d j  are 
not both good or not both bad and not both in any ig. It follows that 

~ ' U ( F ,  7, i , j ,<-. .2~[i~<]Ji,(Zak(i , j ,+Zak(j , i))  1 (3.19) 

Applying Corollary 2.4, we obtain 

~ *  U(F, i , j )  -< c4 l n M  L 
7, " ~ 7 ~ /  M (7) (3.20) 
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Now combining (3.13), (3.18), and (3.20) gives (3.9) with 8 (M)=  c/ln M 
and c > 0 .  

T h e o r e m  3.3. Let # > ~ .  For any allowable contour F and any 
primitive y c F, 

H(F)-H((I-'\~,)')>>. L(y) ~-~-M) 2 rc3 + 8 ( M ) ]  (3.21) 

where cl, c3 > 0 and 5(M) is the same as in Lemma 3.2. 

Proof. From Theorem 2.3, 

/~(~)) -~- / ~ ( / ' \ ~ )  --  / ~ ( / ' )  ~ C 3 

From Lemma 3.1 we also have 

H(F) = ffI(F) 

In M 
y L ( 7 )  (3.22) 

(3.23) 

whenever F is allowable and when the constant c in (2.2) equals # - ~ .  
Combining Lemma 3.2 with (3.22) and (3.23) gives 

6 M l n M  l n M  L - H ( F ) -  ( ) ~  L(v)+ H((F\7) ')+ ffI(v)<~c3-----M- (7) 

or 

In M L 
tt(F) - H((F\?)') ~> H(7) - [c3 + 6(M)] --M-- (7) (3.24) 

The proof is completed by combining (3.24) with Theorem 2.1. 
As an immediate consequence of Theorem 3.3, we have the following. 

C o r o l l a r y  3.4. With the same hypotheses as in Theorem 3.3, 

H( F) - H( ( F\y )') >~ eL(7) (3.25) 

where e > 0 for M sufficiently large. 

Proof of Theorem 1.1. From Lemma 3.1 we may write 

1 Z r  e-~"(r)zo(F ) 
(1 - a o ) [  - E r e  ~n(r) (3.26) 

where the sums are over allowable contours F and where 

Zo(F) = {10 if ~o(F)  = -- 1 
if ~ro(F ) = + 1  
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and a o ( F )  is the spin value of ao in the configuration according to F. 
Clearly Z o ( F ) = 0  unless there is a primitive contour 7 c F with I(7)90.  
Denote such a primitive contour by 7r  so that F =  7r  u 72 u . - -  satisfies 
Condition D, with 0 e I(Tr)- Then by Corollary 3.4 with M large enough so 
that e > 0, 

l(1-6o)~[~e-~L(Tr'e-~S-s((r\~r)"Zo(F)ll~e-~S-s(r' 
2 A s  F 

<~ ~, e fleL(y) 2 e flH((f'\Y)t)/E d fill(F) 
7:Off 1(7 ) F : ?  = YF / F 

~< ~ e -~L(~I (3.27) 
7 : I ( 7 ) e  0 

where all sums involving F are over allowable contours. From Theorem 2.2 
it follows that 

and 

1 
( 1 - a o )  ~ <  ~ e-n~Re C(R+I) (3.28) 

R ~ > I  

�89 ( 1 - a o ) [  <�89 (3.29) 

for /7 sufficiently large. Inequalities (3.28) and (3.29) hold uniformly in L. 
Since a o = 2 X 0 - 1 ,  (3.29) implies (1.4). Repeating all of the above 
arguments with the boundary condition (l.2) replaced by (1.3) results in 
(1.5). 
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